A New Type of Heteropolyoxometalates formed from Lacunary Polyoxotungstate Ions and Europium or Yttrium Cations**

Robertha C. Howell, Frances G. Perez, Sanhya Jain, William DeW. Horrocks, Jr., Arnold L. Rheingold, and Lynn C. Francesconi*

Polyoxometalates have found applications in catalysis, analytical chemistry, and separation science. A new area of interest is the preparation of novel materials based on polyoxometalate building blocks. Prominent examples in this area can be found in the work by Müller et al.[1] on giant molybdates. Because of their multiple coordination requirements and oxophilicity, lanthanide (Ln) cations are suitable for linking polyoxometalate ions together to form new classes of materials with extended metal - oxygen frameworks. In the case of tungsten, lacunary XW₉ (SbW₉O₃₃⁷⁻ and AsW₉O₃₄⁹⁻) ions and $W_5O_{18}^{6-}$ ions have been linked by lanthanide ions to form complexes such as $[Eu_3(H_2O)_3(W_5O_{18})_3(SbW_9O_{33})]^{18-,[2]}$ and recently the largest heteropolyoxotungstate ion, containing a cyclic $[Ln_{16}As_{12}W_{148}O_{524}(H_2O)_{36}]^{76-}$, assembly was reported.[3] Extended polymeric structures in the solid state were recently obtained from La and Ce complexes and the lacunary SiW₁₁O₃₉⁴⁻ ions.^[4]

Here we report a new type of heteropolyoxometalates, stable in the solid state and in aqueous solution at pH 7–9, that are assembled from $(PW_9O_{34})^{9-}$ anions and Eu^{III} or Y^{III} cations. The formation of these species is dependent on the countercation that is used. For example, ^{31}P NMR spectra of the $Eu^{3+}/PW_9O_{34}^{9-}$ (2/1) solution (pH 7.0; $PW_9O_{34}^{9-}$ as the Na salt) prior to addition of the new countercation shows the presence of a precursor complex, as yet uncharacterized. Addition of K^+ results in the complex 1 reported herein. Addition of Cs^+ or Rb^+ to the precursor solution yields different products: $[Eu(PW_{11}O_{39})_2]^{12-}$ and a different unknown species, respectively. Addition of Al^{3+} results in

$$\label{eq:energy} \begin{split} & [\{Eu(H_2O)_3(\alpha_2\text{-}P_2W_{17}O_{61})\}_2]^{14-}. \ Complex \ \textbf{1} \ can \ be \ synthesized \\ & from \ either \ A\text{-}PW_9O_{34}^{\ 9-} \ or \ B\text{-}PW_9O_{34}^{\ 9-}. \end{split}$$

 $[(PM_2W_{10}O_{38})_4(W_3O_{14})]^{30-}(M=Eu, Y; 1)$

Complex 1 is an assembly of $4PW_9O_{34}^{9-}$ anions, $8M^{3+}$ cations, and 7 additional tungsten atoms that form a $[M_8W_7O_{30}]^{6+}$ network (Figure 1). It can be viewed as composed of two V-shaped asymmetric entities that are symme-

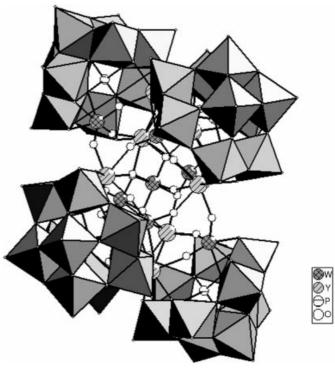


Figure 1. Complex ion **1** comprised of $4PW_0O_{34}^{9-}$ ions connected by a network of M-O (M = Y, W) bonds. Eight Y ions and seven W atoms in a $[M_8W_7O_{30}]^{6+}$ network connect the $PW_0O_{34}^{9-}$ anions.

[*] Prof. L. C. Francesconi, Dr. R. C. Howell, F. G. Perez Chemistry Department Hunter College of City University of New York New York, NY 10021 (USA) Fax: (+1)212-772-5332 E-mail: Ifrances@hejira.hunter.cuny.edu Dr. S. Jain, Prof. W. DeW. Horrocks, Jr. Pennsylvania State University Department of Chemistry, 152 Davey Laboratory University Park, PA 16802 (USA) Prof. A. L. Rheingold The University of Delaware Department of Chemistry and Biochemistry

Newark, DE 19716 (USA)

[**] We gratefully acknowledge Dr. Gerard Parkin and Dr. Brian Bridge-water for the use of the diffractometer at Columbia University and helpful discussions. Supported by NSF-CHE9502213, NIH-GM60654-01 (LCF), NIH-MARC (FGP), NSF-CHE-9705788 (W.D.H), and NSF Grant PCM8111745 for the purchase of the 400 MHz Spectrometer. Infrastructure at Hunter College is supported in part by NIH-Research Centers in Minority Institutions Grant RR03037-08S2.

Supporting information for this article is available on the WWW under http://www.angewandte.com or from the author.

try-related by a C_2 axis about a central tungsten atom. Each asymmetric entity (Figure 2) consists of two distorted Kegginlike parts (L and R), both composed of an A- α -PW₉O₃₄⁹⁻ cap^[5] (see Supporting Information) connected to a distorted M₂W six-membered ring comprising an eight-coordinate (square-antiprismatic) MIII, a seven-coordinate M^{III}, and a tungsten atom. The formulation of 1 as $[(PM_2W_{10}O_{38})_4(W_3O_{14})]^{30-}$ reflects the distorted Keggin-like structural parts. Parts L and R are connected to each other by two bridging WO₆ octahedra (W11 and W12) and the oxygen atoms coordinating the two MIII cations (Y1, Y1').[6] The asymmetric entities are joined together by 6- and 8-membered M-O (M = W, Y) rings about the central tungsten atom W12 (see Supporting Information). Rearrangements of A- and B-XW₉ building groups to form XW₁₀ and Keggin structures have been observed previously.^[7] The stereochemical requirements of the metal atoms (transition metal, lanthanide or actinide), pH of the solution in which the reaction occurs, and the requirements of the heteroatom (P, As) appear to play a role in this transformation.^[8]

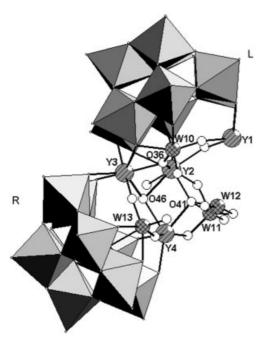
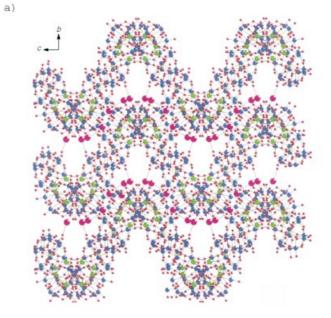


Figure 2. The asymmetric entity of **1** consists of two distorted Keggin-like parts $[(PY_2W_{10}O_{38})^{5-}]$ connected to each other and to the symmetry equivalent entity by bridging oxygen atoms and tungstate units.


The strong involvement of the potassium countercations, seen in the three-dimensional "tertiary" structure of the complex salt, influences the formation of this particular structure. Packing of the anions perpendicular to the crystallographic *a* axis shows a zigzag ribbonlike geometry; potassium cations sew together the strands to form a two-dimensional network. Packing along the *c* axis shows an interlocking structure; potassium cations tie together the heteropolyanions to form linear strands, and tie together the strands as well (Figure 3)

The complex ion 1 bears a charge of -30. This charge is compensated by 15 potassium and six sodium cations from the reaction mixture, as well as nine oxonium ions. On the basis of simple angular considerations, it is likely that three triply bridging hydroxo ligands (μ_3 -OH) connect the M and W ions in the M,W,O core of 1.(Figure 2) The sum of the M-O-M angles is close to the value of 328.4° expected for pure sp³-hybridized oxygen atoms (the three oxygen atoms connecting the PW₉O₃₄⁹anions of **L** and **R** in each asymmetric entity).^[9] The sum of the M-O-M angles for the other triply bridging oxygen atoms is close to the 360° for a μ_3 -O bonding situation. The M–O bond lengths for μ_3 -O, μ_3 -OH, μ_2 -O, and OH₂ are close to those found in other lanthanide oxygen clusters.[10]

Both 183 W and 31 P NMR spectroscopy on $K_{15}Na_6$ - $(H_3O)_9[(PY_2W_{10}O_{38})_4(W_3O_{14})]$ provide evidence that the complex remains intact in aqueous solution. The $PW_9O_{34}{}^{9-}$ group itself is not stable under

aqueous conditions and forms other polyoxoanions upon decomposition. [11] The MIII, W,O network apparently holds the PW $_9$ units together tightly. Two signals are observed in the $^{31}\mathrm{P}$ NMR spectrum, consistent with the C_2 symmetry. The $^{183}\mathrm{W}$ NMR spectrum of the Y analogue shows 19 signals (see Supporting Information), one with a relative intensity of unity and three with about twice the intensity of the other fifteen; this suggests overlapping signals. In total, 22 signals are expected as the complex contains 22 nonequivalent tungsten atoms.

Complex 1 is stable at pH 7–9, according to ^{31}P NMR spectroscopy on the Eu compound. Below pH 6, decomposition to a species with one ^{31}P signal at $\delta = 5.3$ (structure unknown as yet), is observed; at pH 6, the two signals characteristic of 1 and the signal at $\delta = 5.3$ are observed; the signals for 1 alone are observed at pH 7–9. Above pH 10, signals attributed to phosphate are observed.

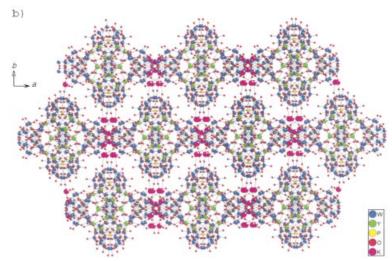


Figure 3. Packing of $\mathbf{1}$ and \mathbf{K}^+ cations along the crystallographic a axis (a) and c axis (b). The \mathbf{K}^+ counterions binding to the surface oxygen atoms of the complex ion link them to form the zigzag and rosette structures shown.

The excitation spectrum of the Eu^{III} compound in aqueous solution showed four transitions at 579.6, 579.9, 580.2, and 580.5 nm, corresponding to the 7F_0 to 5D_0 transitions of the four unique Eu^{3+} sites (Figure 4). Due to the overlap of the

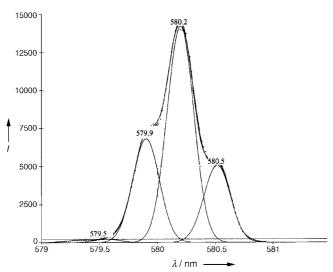


Figure 4. Laser Excitation spectrum of the Eu^{3+} compound showing the overlapping excitation bands of the four different Eu^{3+} sites. The Eu^{3+} emission due to the 5D_0 to 7F_2 transition was monitored.

transitions, it was difficult to determine the lifetime of each Eu^{III} site in D₂O and H₂O solutions in order to calculate the number of coordinated H₂O molecules. Excitation into the tungsten bands of a solid sample of the Eu^{III} compound leads to Eu^{III} emission. The luminescence lifetimes for solid samples, prepared in H₂O and D₂O (λ = 590 nm), resulted in q = 0.7 ± 0.5 H₂O per Eu ion; this is consistent with the crystallographic data, which show two water molecules, one each bound to Eu4, per 8 Eu^{III} ions in the molecule.

Experimental Section

 $K_{15}Na_6(H_3O)_9[(PY_2W_{10}O_{38})_4(W_3O_{14})]^{30-}\colon$ Solid powdered $Na_9PW_9O_{34}\cdot 15\,H_2O^{[13]}$ (2.2 g, 0.81 mmol) was added to a solution of $YCl_3\cdot 6\,H_2O$ (0.57 g, 1.9 mmol) in H_2O (7.5 mL). The resulting suspension was heated to about $80\,^{\circ}C$, and a clear solution formed. Solid KCl (1.4 g, 19 mmol) was added to the hot solution, and the solution heated for an additional 10 min. The resulting slurry was cooled to room temperature and then in an ice bath. The solid was collected by filtration, washed with cold H_2O , and recrystallized from hot H_2O (yield: 2.1 g, 72% based on YCl₃). X-ray-quality crystals of $K_{15}Na_6(H_3O)_9[(PY_2W_{10}O_{38})_4(W_3O_{14})]$ were grown at $-10\,^{\circ}C$ from a clear solution of $K_{15}Na_6(H_3O)_9[(PY_2W_{10}O_{38})_4(W_3O_{14})]$ in H_2O saturated with KCl. The europium complex was prepared in a similar manner from EuCl $_1\cdot 6\,H_2O$.

Elemental analysis (%) calcd (based on crystal structure) for $K_{15}Na_6 \cdot (H_3O)_9[(PY_2W_{10}O_{38})_4(W_3O_{14})] \cdot 9\,H_2O \colon Y 5.71, W 63.40, P 0.99, K 4.71, Na 1.11; found: Y 5.7, W 62.8, P 1.0, K 5.9, Na 0.2. Elemental analysis (%) calcd (based on crystal structure) for <math display="inline">K_{16.5}(H_3O)_{13.5}[(PEu_2W_{10}O_{38})_4(W_3O_{14})] \cdot 26\,H_2O \colon Eu 9.22, W 59.6, P 0.93, K 4.7\%, H_2O 5.4; found: Eu 9.7, W 62.3, P 1.1, K 5.1, Na 0.3, H_2O 4.9. The elemental analyses are consistent with the formulations. The major differences between calculated and found weight percentages are for the countercations and the water of hydration, as expected. IR (KBr disk) for both complexes showed metal–oxygen stretches at <math display="inline">\bar{\nu}=1092$ (m), 1055 (m), 1025 (m), 951 (s), 935 (s), 820(vs), 790 cm $^{-1}$ (s).

³¹P NMR (161.8 MHz, D₂O) of $K_{15}Na_6(H_3O)_9[(PY_2W_{10}O_{38})_4(W_3O_{14})]$: $\delta = -9.68, -10.53$; ³¹P NMR (D₂O) of $K_{165}(H_3O)_{13.5}[(PEu_2W_{10}O_{38})_4(W_3O_{14})]$:

Crystal structure analysis for $K_{15}Na_6(H_3O)_9[(PY_2W_{10}O_{38})_4(W_3O_{14})] \cdot 9\,H_2O$: Crystal dimensions $0.4 \times 0.2 \times 0.2$ mm, monoclinic, space group C2/c, a=22.236(8), b=34.264(12), c=26.698(9) Å, $\beta=96.271(6)^\circ$, V=20219(18) ų, $\rho_{\rm calcd}=4.08$ g cm⁻³, total collected reflections 51 638, unique reflections 23150, $R_{\rm int}=0.0725$, $\mu=75.805$ mm⁻¹, $R_1=0.0824$ for $I<2\sigma(I)$ and $wR_2=0.1999$ for all reflections, total parameters 709, max residual electron density 6.823 e A^{-3} .

Crystal structure analysis for $K_{16.5}(H_3O)_{13.5}[(PEu_2W_{10}O_{38})_4(W_3O_{14})]$. $26\,H_2O$: Crystal dimensions $0.3\times0.3\times0.2$ mm, triclinic, space group P/1, a=20.27270(10), b=22.62970(10), c=25.88400(10) Å, $\alpha=68.33$, $\beta=85.21$, $\gamma=85.52^\circ$, $V=10\,982(8)$ ų, $\rho_{\rm calcd}=3.98$ g cm³, total collected reflections 71 178, unique reflections 45 571, $R_{\rm int}=0.1046$, $\mu=25.106$ mm¹, $R_1=0.1448$ for $I<2\,\sigma(I)$ and $wR_2=0.3439$ for all reflections, total parameters 1365, max residual electron density 8.977 e A^{-3} .

Differences in the anion charge and number of cations found in both $K_{15}Na_6(H_3O)_9[(PY_2W_{10}O_{38})_4(W_3O_{14})]$ and $K_{16.5}(H_3O)_{13.5}[(PEu_2W_{10}O_{38})_4(W_3O_{14})]$ and $K_{16.5}(H_3O)_{13.5}[(PEu_2W_{10}O_{38})_4(W_3O_{14})]$ of 9^- and 13^- , respectively, are most likely compensated by protons. The high residual electron densities in both structures, due to W atom noise, are found within an Ångstrom of W atoms and are accompanied by other W atom noise peaks of similar intensity. Single crystal X-ray diffraction data on $K_{15}Na_6(H_3O)_9[(PY_2W_{10}O_{38})_4(W_3O_{14})]$ and $K_{16.5}(H_3O)_{13.5}[(PEu_2W_{10}O_{38})_4(W_3O_{14})]$ were collected at 298 K and 153 K, respectively, on a Bruker P4 diffractometer equipped with a SMART SC CD detector and a graphite monochromator $(\lambda(Mo_{K\alpha})\!=\!0.71073~\text{Å})$. The structures were solved by direct methods and standard difference-map techniques, and refined by full-matrix least-squares procedures (SHELXTL). $^{[14]}$ No hydrogen atoms were included.

Further details on the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe. de), on quoting the depository numbers CSD-391092 ($K_{15}Na_6(H_3O)_9$ -[($PY_2W_{10}O_{38})_4(W_3O_{14})$]) and CSD-411918 ($K_{16.5}(H_3O)_{13.5}$ [($PEu_2W_{10}O_{38})_4$ -(W_3O_{14})]).

Elemental analysis was performed at Hunter College by inductively coupled plasma analysis on a Spectro Spectroflame M120 E spectrometer and by Kanti Technologies Inc, Tonawanda, NY. IR spectra were recorded on a Perkin Elmer Series 1600 FTIR spectrometer. ³¹P and ¹⁸³W NMR were recorded on a JEOL 400 MHz with 85% H₃PO₄ and 2 M Na₂WO₄, respectively, as external standards.

Laser luminescence studies were performed at Pennsylvania State University with a Continuum YG581 pulsed Nd:YAG laser, pumping a TDL50 tunable dye laser. The 7F_0 to 5D_0 transitions of the Eu³+ ions were excited while the 5D_0 to 7F_2 emission band was monitored. Measurements were carried out at $25.0\pm0.1\,^{\circ}C$. The commercially available Peakfit program, which employs a nonlinear regression method, was used for data analyses. The concentrations of the samples used to obtain the excitation and the luminescence decay lifetime spectra were 20 mm.

Received: November 10, 2000 Revised: August 13, 2001 [Z16077]

a) A. Müller, F. Peters, M. T. Pope, D. Gatteschi Chem. Rev. 1998, 98, 239; b) A. Müller, E. Krickemeyer, H. Bogge, M. Schmidtmann, F. Peters, Angew. Chem. 1998, 110, 3567; Angew. Chem. Int. Ed. 1998, 37, 3360; c) A. Müller, S. Sarkar, S. Q. N. Shah, H. Bögge, M. Schmidtmann, S. Sarkar, P. Kögerler, B. Hauptfleisch, A. X. Trautwein, V. Schünemann, Angew. Chem. 1999, 111, 3435; Angew. Chem. Int. Ed. 1999, 38, 3238; d) A. Müller, S. Q. N. Shah, H. Bogge, M. Schmidtmann, Nature 1999, 397, 48; e) A. Müller, S. Polarz, S. K. Das, E. Krickemeyer, H. Bögge, M. Schmidtmann, B. Hauptfleisch, Angew. Chem. 1999, 111, 3439; Angew. Chem. Int. Ed. 1999, 38, 3241.

^[2] T. Yamase, H. Naruke, Y. Sasaki, J. Chem. Soc. Dalton Trans. 1990, 1687.

^[3] K. Wassermann, M. H. Dickman, M. T. Pope, Angew. Chem. 1997, 109, 1513; Angew. Chem. Int. Ed. Engl. 1997, 36, 1445.

COMMUNICATIONS

- [4] M. Sadakane, M. H. Dickman, M. T. Pope, Angew. Chem. 2000, 112, 3036; Angew. Chem. Int. Ed. 2000, 39, 2914.
- [5] Y3, Y4, and W13 of **R** belong to three different edge-shared $Y(3,4)W_2O_{12}$ and $W(13)W_2O_{13}$ groups and are linked to the others through corner-shared oxygen atoms to give an A-type positional isomer. The fourth edge-shared W_3O_{13} group is not rotated with respect to the parent α -Keggin part (see Supporting Information); this defines the second type of isomerism as α .
- [6] A detailed description of the bonding in L and R (Figure 2) follows: Y1 (7-coordinate) and Y2 (8-coordinate) are both bound to oxygen atoms of L. Y1 is also bound to one oxygen atom in each of the symmetry-equivalent L (μ₂-O (2.264(17) Å) to W10A) and R (μ₂-O (2.275(19) Å) to W13A) and μ₂-O (2.301(17) Å) to W12. The other four coordination sites of the eight-coordinate Y2, which connect L to R, are occupied by μ₃-O (2.483(17) Å) to Y3 and Y4, μ₂-O to W12 (2.310 Å), μ₂-O to W11 (2.39 Å) and a terminal O atom (2.44 Å). Similarly, Y3 and Y4 are bound to O atoms of R. Y3 is connected to L by μ₃-O (2.442(17) Å) to W4 and W5, μ₃-O (2.556(18) Å) to W5 and W10, μ₃-O (2.464 (18) Å) to W4 and Y2, and the fourth remaining site to μ₃-O (2.337(17) Å) to Y2 and Y4. The three remaining coordination sites on Y4, connecting Y4 to L, are occupied by μ₂-O (2.341(18) Å) to W12, μ₂-O (2.368(19) Å) to W11, and μ₃-O (2.335(17) Å) to W12 and Y2.
- [7] A. Müller, F. Peters, M. T. Pope, D. Gatteschi, *Chem. Rev.* 1998, 98, 239, and references therein; W. H. Knoth, P. J. Domaille, R. L. Harlow, *Inorg. Chem.* 1986, 1577.
- [8] For example, reaction of uranyl ion with Na₇[NaAs₄W₄₀O₁₄₀]·60 H₂O, a source of AsW₉O₃₃⁹-, resulted in rearrangement to form species that contain 3 or 2 AsW₁₀O₃₆⁹- units, depending on pH. The uranyl ion has specific stereochemical requirements that result in interlinking of AsW₉O₃₃⁹- and AsW₁₀O₃₆⁹- units. K.-C. Kim, M. T. Pope, *J. Chem. Soc. Dalton Trans.* 2001, 986. Counterions also were found to play an important structural role in the reaction of uranyl ion with PW₉O₃₄⁹-: K.-C. Kim, M. T. Pope, *J. Am. Chem. Soc.* 1999, 121, 8512.
- [9] S. M. Gorun, G. C. Papaefthymiou, R. B. Frankel, S. J. Lippard, J. Am. Chem. Soc. 1987, 109, 3337. For Y^{III}: O26, Y3, W5, W10: 325.65; O46, Y2, Y3, Y4: 341.0; O25, Y2, Y3, W4: 345.38. For Eu^{III}: O46, Eu2, W11, W17: 329.18; O33, Eu1, Eu2, Eu4: 338.30; O45, Eu2, Eu4, W16: 341 92
- [10] Y^{III}—μ₃-O, Y^{III}—μ₂-O, Y^{III}—O, Y^{III}—OH₂ bonds: a) E. H. Barash, P. S. Coan, E. B. Lobkovsky, W. E. Streib, K. G. Caulton, *Inorg. Chem.* 1993, 32, 497; b) B. M. Chamberlain, Y. Sun, J. R. Hagadorn, E. W. Hemmesch, V. G. Young, Jr., M. Pink, M. A. Hillmyer, W. B. Tolman, *Macromolecules*, 1999, 32, 2400; c) F. A. Cotton, P. Legzdins, *Inorg. Chem.* 1968, 7, 1777. Gd^{III}/Tb^{III} bonds to μ₃-O, μ₂O, O, OH₂: d) X.-M. Chen, Y.-L. Wu, Y.-X. Tong, Z. Sun, D. N. Hendrickson, *Polyhedron* 1997, 16, 4265; e) J. C. Plakatouras, I. Baxter, M. Hursthouse, K. M. A. Malik, J. McAleese, S. R. Drake, *J. Chem. Soc. Chem. Commun.* 1994, 2455; f) O. Poncelet, L. G. Hubert-Pfalzgraf, *Polyhedron* 1989, 8, 2183; g) R. Wang, M. D. Carducci, Z. Zheng, *Inorg. Chem.* 2000, 39, 1836; h) J. Liu, E. A. Meyers, S. G. Shore, *Inorg. Chem.* 1998, 37, 5410.
- [11] M. S. Weeks, C. L. Hill, R. F. Schinazi J. Med. Chem. 1992, 35, 1216.
- [12] W. DeW. Horrocks, Jr., D. R. Sudnick, J. Am. Chem. Soc. 1979, 101, 334.
- [13] W. G. Klemperer, Inorg. Synth. 1992, 27, 71.
- [14] G. M. Sheldrick, SHELXTL, An integrated system for solving, refining and displaying crystal structures from diffraction data, University of Göttingen, Germany, 1981.

"Nanoobjects" by Self-Assembly Concomitant with Modifications under Alterable Boundary Conditions: Incorporation of Paramagnetic Metal Centers (Cu²⁺) in Ring-Shaped Molybdenum-Oxide Based Clusters**

Achim Müller,* Erich Krickemeyer, Hartmut Bögge, Marc Schmidtmann, Paul Kögerler, Christina Rosu, and Eike Beckmann

Dedicated to Professor Dr. Hansgeorg Schnöckel on the occasion of his 60th birthday

Until now it has been a tremendous and ongoing challenge to initiate a variety of chemical reactions at well-defined positions even of the same and structurally well-defined nanoobject, especially if significant property changes or novel functionalities are intended.[1] This aim has now been achieved for giant ring-shaped molybdenum oxide based clusters of the type $\{Mo_{154}\}$ and $\{Mo_{176}\}$ which can be obtained in related crystalline salts in a facile high-yield synthesis and exhibit nanosized cavities, a variety of sites with different well-defined functional groups, and overall are comparable to a nanostructured landscape. [2, 3] Here we report the incorporation of paramagnetic metal centers, that is, Cu2+ ions, in cavities of these rings-which are spanned by four O atoms and have the corresponding appropriate size—according to a basic type of self-assembly process leading to nanoobjects all of which have the ring topology. Important in this context is that this allows a variety of deliberate concomitant modifications under alterable boundary conditions—such as the pH, temperature, and/or presence of different substrates—corresponding to the different sites.^[4] The procedure opens perspectives not only for a new type of nanochemistry but also for an understanding of a basic reaction type of material organization (see below).

The reduction of an acidified aqueous polymolybdate solution with copper powder leads to the crystalline black compound 1, which was characterized by elemental analyses

 $(NH_4)_{26}[(H_4Cu_5^{II})Mo_{28}^VMo_{114}^{VI}O_{432}(H_2O)_{58}] \cdot \approx 300 H_2O$ 1

(including cerimetric titration to determine the formal number of Mo^V centers), thermogravimetry (to determine the amount of crystal water), spectroscopy (UV/Vis/NIR, infrared (IR), resonance-Raman, ESR), single-crystal X-ray structure analysis,^[5] and bond valence sum (BVS)^[6] calculations (to determine the positions of the H₂O molecules and to

- [*] Prof. Dr. A. Müller, E. Krickemeyer, Dr. H. Bögge, M. Schmidtmann, Dr. P. Kögerler, Dr. C. Rosu, Dipl.-Chem. E. Beckmann Lehrstuhl für Anorganische Chemie I Fakultät für Chemie der Universität Postfach 100131, 33501 Bielefeld (Germany) Fax: (+49)521-106-6003 E-mail: a.mueller@uni-bielefeld.de
- [**] The authors thank Prof. D. Gatteschi, University of Florence (Italy), for helping with the interpretation of the ESR spectrum, and Dipl.-Chem. A. Berkle and Dr. J. Hockemeyer, University of Bielefeld (Germany), for their collaboration. C. R. thanks the Alexander von Humboldt Foundation for her fellowship. Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.